
Cache Memory Optimizations



Cache Measures
• Hit rate: fraction found in that level

– So high that usually talk about Miss rate
• Average memory-access time 

= Hit time + Miss rate x Miss penalty 
(ns or clocks)

• Miss penalty: time to replace a block from lower level, 
including time to replace in CPU
– access time: time to lower level 

= f(latency to lower level)
– transfer time: time to transfer block 

=f(BW between upper & lower levels)



4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level? 
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss? 
(Block replacement)

• Q4: What happens on a write? 
(Write strategy)



Q1: Where can a block be placed in the upper level?

• Block 12 placed in 8 block cache:

– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = Block Number Modulo Number Sets

Cache

0 1 2 301234567

Memory

1111111111222222222233
01234567890123456789012345678901

Full Mapped
Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0



Q2: How is a block found if it is in the upper level?

• Tag on each block

– No need to check index or block offset

• Increasing associativity shrinks index, expands 
tag

Block
Offset

Block Address

IndexTag



Q3: Which block should be replaced on a 
miss?

• Easy for Direct Mapped

• Set Associative or Fully Associative:

– Random

– LRU (Least Recently Used)

Assoc:       2-way 4-way 8-way

Size LRU         Ran       LRU Ran      LRU Ran

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%



Q4: What happens on a write?
Write-Through Write-Back

Policy

Data written to 
cache block

also written to 
lower-level 

memory

Write data only 
to the cache

Update lower 
level when a 

block falls out of 
the cache

Do read misses 
produce writes? No Yes

Do repeated 
writes make it to 

lower level?
Yes No



Causes of misses

• Compulsory
– First reference to a block

• Capacity
– Blocks discarded and later retrieved

• Conflict
– Program makes repeated references to multiple 

addresses from different blocks that map to the 
same location in the cache



Memory Hierarchy Basics

Basic cache optimizations:
– Larger block size

• Reduces compulsory misses

• Increases capacity and conflict misses, increases miss penalty

– Larger total cache capacity to reduce miss rate
• Increases hit time, increases power consumption

– Higher associativity
• Reduces conflict misses

• Increases hit time, increases power consumption

– Higher number of cache levels
• Reduces overall memory access time



Ten Advanced Optimizations

• Small and simple first level caches
– Critical timing path:

• addressing tag memory, then

• comparing tags, then

• selecting correct set

– Direct-mapped caches can overlap tag compare and 
transmission of data

– Lower associativity reduces power because fewer cache 
lines are accessed



L1 Size and Associativity

Access time vs. size and associativity



L1 Size and Associativity

Energy per read vs. size and associativity



Way Prediction

• To improve hit time, predict the way to pre-set mux
– Mis-prediction gives longer hit time

– Prediction accuracy
• > 90% for two-way

• > 80% for four-way

• Extend to predict block as well
– “Way selection”

– Increases mis-prediction penalty



Pipelining Cache

• Pipeline cache access to improve bandwidth
– Examples:

• Pentium:  1 cycle

• Pentium Pro – Pentium III:  2 cycles

• Pentium 4 – Core i7:  4 cycles

• Increases branch mis-prediction penalty

• Makes it easier to increase associativity



Nonblocking Caches
• Allow hits before previous misses complete

– “Hit under miss”

– “Hit under multiple miss”

• Very Effective in Out of order Execution



Multibanked Caches
• Organize cache as independent banks to support 

simultaneous access
– ARM Cortex-A8 supports 1-4 banks for L2

– Intel i7 supports 4 banks for L1 and 8 banks for L2

• Interleave banks according to block address



Critical Word First, Early Restart
• Critical word first

– Request missed word from memory first

– Send it to the processor as soon as it arrives

• Early restart
– Request words in normal order

– Send missed work to the processor as soon as it arrives

• Effectiveness of these strategies depends on block 
size and likelihood of another access to the 
portion of the block that has not yet been fetched



Merging Write Buffer
• When storing to a block that is already pending in the 

write buffer, update write buffer

• Reduces stalls due to full write buffer

No write 
buffering

Write buffering



Compiler Optimizations

• McFarling [1989] reduced caches misses by 75% 
on 8KB direct mapped cache, 4B blocks in software

• Instructions
– Reorder procedures in memory so as to reduce conflict misses
– Profiling to look at conflicts (using tools they developed)

• Data
– Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
– Loop Interchange: change nesting of loops to access data in order stored 

in memory
– Loop Fusion: Combine 2 independent loops that have same looping and 

some variables overlap
– Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows



Merging Arrays Example

/* Before: 2 sequential arrays */

int val[SIZE];

int key[SIZE];

/* After: 1 array of stuctures */

struct merge {

int val;

int key;

};

struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality



Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory every 100 
words; improved spatial locality



Loop Fusion Example

/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve spatial locality



Hardware Prefetching
• Fetch two blocks on miss (include next sequential 

block)



Compiler Prefetching
• Insert prefetch instructions before data is needed

• Register prefetch
– Loads data into register

• Cache prefetch
– Loads data into cache



Summary


